Что такое электрический дроссель?
Дросселем, в общем случае, называют катушку индуктивности, чаще всего с сердечником, которая служит для устранения или уменьшения переменного (импульсного) тока, разделения или ограничения сигналов различной частоты. Исходя из этого, дроссели условно можно разделить на следующие типы:
— сглаживающие дроссели, предназначены для ослабления переменной составляющей постоянного тока или напряжения различной частоты, то есть сглаживания пульсаций, на выходе и входе силовых преобразователей или выпрямителей;
Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.
— дроссели переменного тока, предназначены для ограничения электрического тока, при резких изменениях нагрузки, например, при пуске электродвигателей или источников питания;
— дроссели насыщения, или управляемые дроссели, предназначенные для регулирования индуктивного сопротивления за счёт изменения тока подмагничивания.
Дроссели, как и любая другая катушка индуктивности, может быть без сердечника, с замкнутым сердечником, с сердечником, имеющим малый зазор и с сердечником, имеющим большой зазор или разомкнутым сердечником. Поэтому в независимости от назначения дросселя его принцип действия основан на электромагнитных свойствах катушки индуктивности и сердечника, на котором она выполнена.
Принцип работы идеального дросселя
Дроссель, как и любой другой элемент электрической цепи, содержит ряд параметров, которые определяются его физическими и конструктивными характеристиками. В зависимости от назначения дросселя одни его характеристики стараются улучшить, а значение других уменьшить. Но, несмотря на характер работы дросселя, его основным параметром является индуктивность, поэтому рассмотрим дроссель, содержащий только один параметр – индуктивность, такой дроссель называется идеальным и он характеризуется следующими допущениями:
— обмотка дросселя не имеет активного сопротивления;
— отсутствует межвитковая ёмкость проводников дросселя;
— магнитное поле в сердечнике однородно, то есть значение индукции и напряженности в различных его точках имеет одинаковое значение.
С учётом таких допущений, представим сердечник, на который намотана катушка.
Идеальный дроссель.
Подадим на катушку переменное напряжение U, в результате по катушке потечёт переменный ток I, создающий в сердечнике переменный магнитный поток Φ. Тогда в соответствии с законом самоиндукции в витках обмотки возникнет ЭДС самоиндукции Е. Так как у нас отсутствует активное сопротивление обмотки идеального дросселя, то ЭДС самоиндукции уравновесит напряжение, вызвавшее электрический ток
В тоже время индуктивность, как коэффициент самоиндукции можно определить по следующему выражению
где ω – количество витков катушки,
S – площадь поперечного сечения сердечника,
B – магнитная индукция,
I – величина электрического тока.
Тогда выражение для ЭДС самоиндукции будет иметь вид
Данное выражение показывает, что ЭДС самоиндукции зависит от конструкции и размеров дросселя, а также от скорости изменения магнитного поля (dB/dt).
Так как в идеальном дросселе отсутствуют активные нагрузки, а только индуктивная составляющая, то активная мощность будет равняться нулю. В индуктивном элементе расходуется только реактивная мощность на создание магнитного поля.
Принцип работы реального дросселя
В реальном дросселе, в отличие от идеального, кроме индуктивности имеется ещё рад параметров, вносящих активную составляющею мощности. Рассмотрим реальный дроссель
Магнитные силовые линии реальной катушки.
Поступающий в дроссель переменный ток возбуждает вокруг катушки переменное магнитное поле, определяемое магнитным потоком Φ. В идеальном дросселе он полностью замыкается через сердечник Φ0, но в реальности к нему добавляется магнитный поток рассеяния, охватывающий как витки по отдельности, так и группы витков провода. Он зависит от расположения витков, сечения провода, плотности укладки витков провода и так далее. Поток рассеивания достаточно трудно выразить количественно, поэтому для его характеристики вводят понятие потокосцепление рассеяния ΨS, который можно выразить через индуктивность рассеяния LS обмоток дросселя
В соответствии с законом электромагнитной индукции, поток рассеяния возбуждает ЭДС рассеяния
Поток рассеяния в дросселе негативно влияет на работу устройств, так как вызывает паразитные шумы, наводки и потери мощности в целом.
Кроме потерь реактивной мощности потоками рассеяния, в реальном дросселе происходят потери активной мощности в сопротивлении витков обмотки и потерях в сердечнике, обусловленных его ферромагнитными свойствами.
Эквивалентная схема дросселя
Для анализа работы реального дросселя создадим схему замещения, которая учитывает его основные и паразитные параметры.
Эквивалентная схема дросселя с учётом паразитных параметров.
Таким образом, на характеристики дросселя кроме собственной индуктивности дросселя L, являющейся основным параметром, так сказать полезным, присутствует паразитная индуктивность LS, обусловленная потоком рассеяния, активное сопротивление R обмоточного провода, межвитковая ёмкость С обмотки дросселя, а также проводимости gμ. Проводимость gμ характеризует мощность, которая затрачивается на перемагничивание сердечника, из-за наличие петли гистерезиса.
Уравнение соответствующее эквивалентной схеме будет иметь вид
Как видно на схеме ток в дросселе состоит из двух составляющих: Iμ – ток отвечающий за создание основного магнитного потока Φ0 и Iа – ток, учитывающий потери мощности при перемагничивании и нагрев сердечника
где РС – мощность потерь в сердечнике.
Основной параметр дросселя – индуктивность L определяется по выражениям для индуктивностей различных типов, например, индуктивность без сердечника, индуктивности на замкнутых сердечниках, индуктивности на сердечниках с зазором и индуктивности на разомкнутых сердечниках.
Остальные параметры определить несколько сложнее. Рассмотрим определение данных параметров.
Как рассчитать межвитковую ёмкость обмотки дросселя?
В дросселе, между витками, слоями и металлическими предметами вокруг дросселя существует некоторая разность потенциалов, создающих электрическое поле. Для оценки влияния данного поля вводят понятие межвитковой ёмкости или собственной ёмкости дросселя, величина которой зависит от размеров и конструктивных особенностей дросселя.
Межвитковая ёмкость C обмотки, являясь паразитным параметром, совместно с индуктивностью рассеивания и собственной индуктивностью дросселя образуют различные виды фильтров и колебательных контуров. Хотя данный параметр имеет небольшое значение, тем не менее, в определённых условиях его приходится учитывать, однако точный расчёт затруднён в связи с большим влиянием различных конструктивных параметров, в первую очередь, взаимного расположения витков провода между собой. Так наибольшей межвитковой ёмкостью обладают катушки намотанные «внавал», а наименьшей – катушки с намоткой типа «Универсаль» или секционные катушки.
Межвитковую емкость Собщ дросселя можно представить в виде суммы емкостей между внутренним слоем обмотки и магнитопроводом С1 и межслоевой емкости внутри обмотки С2
Ёмкость между внутренним слоем обмотки и магнитопроводом можно определить из эмпирической формулы
где εа – абсолютная диэлектрическая проницаемость среды вокруг проводника, εа = ε0εr,
εr – относительная диэлектрическая проницаемость,
ε0 – электрическая постоянная, ε0 = 8,85 * 10-12 Ф/м,
r – радиус поперечного сечения провода,
а – расстояние между магнитопроводом и осью провода,
n – число витков в слое,
р1 – периметр витка внутреннего слоя обмотки.
Относительная диэлектрическая проницаемость берётся для материала каркаса дросселя, если бескаркасное исполнение, то соответственно проницаемость воздуха либо изоляции проводника, в зависимости от необходимой точности.
Емкость между слоя обмотки так же вычисляется по эмпирической формуле
где рср – периметр среднего витка обмотки,
b – расстояние между осями витков в соседних слоях,
m – число слоёв.
В данном случае диэлектрическая проницаемость берётся для материала межслоевой изоляции.
Во всех случаях необходимо добиваться уменьшения межвитковой ёмкости обмотки. Для этого применяют различные виды намоток и материалов для каркасов и межслоевой изоляции с малым значением диэлектрической проницаемости.
Как рассчитать индуктивность рассеяния дросселя?
Индуктивность рассеяния LS, также как и межвитковая ёмкость, является паразитным параметром и негативно влияет на индуктивные элементы, в частности на дроссель. Индуктивность рассеяния вместе с межвитковой емкостью образуют фильтр нижних частот, вызывающий уменьшение амплитуды переменного напряжения и тока на высоких частотах. Данное обстоятельство приводит к тому, что увеличиваются активные потери мощности и происходит нагрев дросселя.
Индуктивность рассеяния зависит от типа конструкции дросселя и его размеров и может быть определена по следующему выражению
где μ0 – относительная магнитная проницаемость, μ0 = 4π*10-8,
рср – периметр среднего витка обмотки,
w – количество витков провода в дросселе,
l – длина намотки,
h – толщина намотки.
В большинстве случаев необходимо добиваться уменьшения индуктивности рассеяния, для чего стараются как можно плотнее уложить провод в намотке, уменьшения количества слоёв обмотки дросселя и увеличения длины намотки. В идеале стремятся использовать однослойные обмотки, если это возможно.
Стоит отметить, что приведённые выражения для определения паразитных параметров межвитковой ёмкости С и индуктивности рассеяния LS являются ориентировочными и могут в различных случаях давать погрешность порядка 20 %. Поэтому при необходимости знать точное значение их определяют экспериментальным путём различными способами.
На сегодня всё, а в следующей статье я расскажу о потерях мощности и нагреве дросселей при работе.
Теория это хорошо, но необходимо отрабатывать это всё практически ПОПРОБОВАТЬ МОЖНО ЗДЕСЬ