Обучающие статьи по электронике

ElectronicsBlog

Обучающие статьи по электронике

надежно вложить деньги

Как определить размеры трансформатора?

Обмотки трансформатора с изоляцией.

Всем доброго времени суток! Довольно часто у радиолюбителей возникают вопросы касающиеся определению размеров трансформатора. Зачастую они пользуются известными формулами связывающие сечение сердечника и мощность, которую передает трансформатор. Но зачастую данные выражения, которые можно встретить в сети, выведены под конкретную серию трансформаторов и не учитывают особенностей материала магнитопровода и обмоток. В данной статье я попробую раскрыть некоторые нюансы определения размеров сердечника.

Режимы работы трансформатора. Часть 2

Схема опыта короткого замыкания

Всем доброго времени суток! В первой части статье о режимах работы трансформатора я рассказал о холостом ходе и расчете параметров в этом режиме. Кроме данного режима трансформатор может оказаться в аварийном режиме – режиме короткого замыкания. Кроме того одним из этапов испытания и проверки параметров трансформатора является опыт короткого замыкания, при котором на первичную обмотку подают такое напряжение, при котором в замкнутой вторичной обмотке протекает номинальный ток. Данный опыт и опыт короткого замыкания позволяют определить КПД трансформатора. Об этом пойдет речь в данной статье.

Режимы работы трансформатора. Часть 1

Схема опыта холостого хода

Всем доброго времени суток! В прошлой статье я рассказывал об устройстве трансформатора и его работе. Также я указывал, что для анализа трансформатора используют эквивалентные схемы, содержащие основные параметры трансформатора и позволяющие оценить его характеристики в различных режимах. В процессе своей работы трансформатор может находиться в трёх основных режимах: режим холостого хода, режим короткого замыкания и номинальный режим.
Для рассмотрения работы трансформатора в различных режимах мы будем использовать схему замещения трансформатора.

Устройство и схема трансформатора

Рабочий процесс трансформатора

Трансформатором называется статическое (то есть не имеющее движущихся частей) электромагнитное устройство, предназначенное для преобразования переменного тока одного напряжения в переменной ток другого напряжения при неизменной частоте. Простейший трансформатор имеет две обмотки, электрически изолированные друг от друга, за исключением автотрансформатора, и объединённые общим магнитным потоком. Для усиления магнитной связи обмоток и уменьшения паразитных параметров большинство трансформаторов выполняют на замкнутом магнитопроводе из ферромагнитных материалов (электротехнические стали и сплавы, ферриты, магнитодиэлектрики).

Классификация трансформаторов

Типы сердечников трансформаторов: броневой, стержневой и тороидальный

Всем доброго времени суток! В прошлой статье я рассказывал о расчёте дросселей переменного тока, особенностью которых является отсутствие постоянного тока подмагничивания. Такие дроссели широко применяются в преобразователях напряжения. Ещё одним электромагнитным устройством, применяемым в преобразовательной технике, является трансформатор, представляющий собой несколько дросселей объединённых общей магнитной цепью.

Кроме преобразовательной техники трансформаторы находят широкое применение в импульсной, усилительной и силовой электронике. Поэтому в зависимости от назначения и конструктивных особенностей трансформаторы разделяют не несколько категорий и типов.

В данной статье я расскажу о типах трансформаторов и об особенностях их конструкций.

Дроссель переменного тока и его расчёт

Дроссель переменного тока

Дроссель переменного тока, так же как и любой другой дроссель представляет собой катушку индуктивности с ферромагнитным сердечником. Данный тип дросселя включается последовательно с нагрузкой, аналогично сглаживающему дросселю, но в отличие от него, протекающий ток через дроссель переменного тока не имеет постоянного тока подмагничивания. В связи с этим дроссель переменного тока широко применяется в балластных и токоограничительных цепях, мощных антенных и фильтрующих устройствах, а так же в различных импульсных преобразователях напряжения.

В независимости от применения дросселя в схеме его работа основана на зависимости его реактивного сопротивления XL от частоты f протекающего через него тока IH и падении напряжения на дросселе UL

Дроссель фильтра и его расчёт

Всем доброго времени суток! Большинству электронных схем для правильной работы необходим постоянный ток. Однако выпрямительные устройства различных конструкций выдают напряжения, имеющие пульсирующую составляющую. Для уменьшения пульсаций между выпрямителем и нагрузкой ставят сглаживающий фильтр. В современных схемах роль такого фильтра выполняет электролитический конденсатор большой ёмкости, параллельный нагрузке. Во многих случаях его вполне достаточно, особенно при питании цифровых схем. Но при питании от емкостных фильтров аналоговых устройств или устройств с большим потребляемым током, импульсные помехи оказывают существенное влияние на работу устройства, а в особых случаях и выводит их из строя. Поэтому в дополнение к конденсатору ставят дроссель, последовательно с нагрузкой, что значительно улучшает режим работы устройства.

Нагрев и охлаждение дросселя

Дроссель на Ш-образном (броневом) сердечнике

Нагрев дросселя – очень важный параметр, определяющий допустимую нагрузку дросселя, и, в конечном итоге, срок его службы. Величина нагрева и перегрева зависит от множества факторов: частоты напряжения и тока, их вида, качества материалов сердечника и обмотки, величины потерь в них, температуры окружающей среды, устройства дросселя. Максимальное значение нагрева дросселя зависит в первую очередь от материала изоляции обмоточного провода и, как правило, составляет 105 – 130 °С.

Потери мощности в дросселе. Часть 2

Удельные потери по петли гистерезиса

Всем доброго времени суток! В прошлой статье я начал рассказывать о потерях мощности при работе дросселя, в частности была рассмотрена мощность, которая выделяется в обмотке дросселя и влияния на неё размеров проводника, из которого выполнена обмотка, а также параметры самой обмотки. Ещё одним существенным фактором потерь мощности, являются процессы, происходящие в сердечнике дросселя, такие как вихревые токи и перемагничивание ферромагнетиков.

Подынтегральное выражение показывает зависимость магнитной индукции В от напряженности Н магнитного поля в сердечнике, проинтегрировав которое получим так называемый коэффициент удельных объёмных магнитных потерь вещества PSP, который численно равен площади охватываемой петлёй гистерезиса.

Потери мощности в дросселе.Часть 1

формы напряжения и тока

Всем доброго времени суток! В прошлой статье я рассказывал о дросселе и его параметрах. В частности рассмотрел межвитковую ёмкость и индуктивность рассеивания обмоток. Данные параметры влияют на реактивную мощность дросселя, кроме потерь реактивной мощности в дросселе присутствуют параметры, вызывающие потери активной мощности. Это во-первых, сопротивление обмоточного провода дросселя и активные потери в сердечнике. Данная статья посвящена активным потерям в обмотках дросселя.

 
куда вложить деньги выгодно