ElectronicsBlog

Обучающие статьи по электронике

Режимы работы трансформатора. Часть 2

Всем доброго времени суток! В первой части статье о режимах работы трансформатора я рассказал о холостом ходе и расчете параметров в этом режиме. Кроме данного режима трансформатор может оказаться в аварийном режиме – режиме короткого замыкания. Кроме того одним из этапов испытания и проверки параметров трансформатора является опыт короткого замыкания, при котором на первичную обмотку подают такое напряжение, при котором в замкнутой вторичной обмотке протекает номинальный ток. Данный опыт и опыт короткого замыкания позволяют определить КПД трансформатора. Об этом пойдет речь в данной статье.

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

Режим короткого замыкания

В процессе работы трансформатора иногда возникают ситуации, когда его вторичная обмотка оказывается замкнутой. В этом случае в ней возникает ток, превышающий номинальный в десятки раз. В этом случае говорят о работе трансформатора в режиме короткого замыкания. Данный режим является аварийным и недопустимым, так как вследствие перегрева обмоток трансформатора происходит их разрушение. Таки образом, режим короткого замыкания характеризуется следующими параметрами напряжения и тока

Для испытания трансформатора и определения некоторых его параметров проводят опыт короткого замыкания, при котором вторичную обмотку замыкают, а на первичную обмотку подают такое напряжение, что во вторичной обмотке устанавливается номинальный ток. В таком случае напряжение на первичной обмотке называется нормальным напряжением короткого замыкания. Величину данного напряжения в параметрах трансформатора обычно выражают в процентах от номинального напряжения первичной обмотки

где UКЗ – нормальное напряжение короткого замыкания,

UH – номинальное напряжение на первичной обмотки.

«Нормальное» короткое замыкание

В виду того, что нормальное напряжение короткого замыкания UКЗ составляет несколько процентов (обычно 1-3%), то и противодействующая ей ЭДС самоиндукции Е1 в первичной обмотке так же имеет незначительное значение. Соответственно и электромагнитная индукции и потери в сердечнике будут незначительными, то есть в практических расчётах их можно не учитывать. Ниже приведена эквивалентная схема замещения трансформатора в режиме «нормального» короткого замыкания

Эквивалентная схема замещения трансформатора в режиме «нормального» короткого замыкания
Эквивалентная схема замещения трансформатора в режиме «нормального» короткого замыкания.

Так как мощность, подводимая к трансформатору, тратится в основном на преодоление сопротивления провода обмоток, то параметры магнитного контура трансформатора можно не учитывать. Тогда параметры трансформатора можно описать следующими выражениями

где РКЗ – мощность при коротком замыкании,

IКЗ – ток короткого замыкания,

RК – суммарное сопротивление первичной и вторичной обмоток.

Так как в данном режиме по обмоткам протекают номинальные токи, то и температура обмоток также будет соответствовать рабочей, поэтому для определения реальной величины сопротивления обмоток необходимо сопротивление короткого замыкания полученное опытным путем пересчитать с учетом температурного коэффициента сопротивления и условной температуры 75 °С.

Опыт короткого замыкания

Как я уже говорил в предыдущей статье, изготовленный трансформатор подвергают двум основным испытаниям: опыту холостого хода и опыту короткого замыкания. Первое испытание я рассмотрел в предыдущей статье, а для второго собирают схему изображенную ниже

Схема опыта короткого замыкания
Схема опыта короткого замыкания.

Как видно на схеме в цепь первичной обмотки трансформатора включены вольтметр PV1, амперметр РА1 и ваттметр PW1, а вторичная обмотка замкнута накоротко. Для снятия характеристик трансформатора в этом режиме на первичную обмотку трансформатора подают такое напряжение UКЗ, при котором ток IКЗ в обмотке соответствовал номинальному току. После того как трансформатор прогреется в течении нескольких минут снимают показания с приборов.

Для построения графической характеристики короткого замыкания снимают параметры при изменении напряжения на первичной обмотке от 30 до 110 % UКЗ.

При проведении опыта короткого замыкания определяют следующие параметры трансформатора:

— процентное отношение напряжения короткого замыкания UКЗ%

где UКЗ – «нормальное» напряжение короткого замыкания,

UН – номинальное напряжение первичной обмотки.

— активное сопротивление обмоток трансформатора RК

где РКЗ – мощность, снимаемая с ваттметра PW1,

IКЗ – ток короткого замыкания, снимаемая с амперметра РА1.

— полное сопротивление обмоток трансформатора ZK

где UКЗ – «нормальное» напряжение короткого замыкания, снимаемое с вольтметра PV1.

— реактивное сопротивление обмоток трансформатора ХК

— коэффициент мощности короткого замыкания cos φКЗ

Мощность, подводимая к трансформатору при проведении опыта короткого замыкания для силовых трансформаторов, составляет 1 – 4 % от номинальной мощности трансформатора. При этом, чем больше номинальная мощность трансформатора, тем меньше мощность при проведении опыта короткого замыкания, то есть меньше потери в обмотках.

Коэффициент полезного действия трансформатора

Одной из основных характеристик любого преобразовательного устройства и трансформатора, в частности, является коэффициент полезного действия или сокращенно КПД.

Коэффициентом полезного действия трансформатора (КПД) η называется отношение активной мощности отдаваемой трансформатором Р2 к активной мощности подаваемой на трансформатор Р1

КПД трансформатора можно определить несколькими способами: прямым измерением мощностей и косвенным.

Прямой метод вычисления КПД заключается в измерении отдаваемой Р2 и поступаемой Р1 мощностей при полной нагрузке трансформатора и взятии их отношения. Однако такой метод не нашёл применения из-за неэкономичности, так как необходимо использовать большое количество энергии при испытаниях трансформаторов.

На практике чаще используют косвенный метод, заключающийся в определении потерь в сердечнике РС из опыта холостого хода, а потерь в обмотке (потерь в меди) РМ из опыта короткого замыкания. Тогда подводимая к трансформатору мощность составит

Соответственно КПД определяют по следующему выражению

Так как отдаваемая мощность Р2 трансформатора имеет как активную так и реактивную составляющую, соотношение между которыми определяется коэффициентом мощности cos φ, то КПД трансформатора составит

где U2 – номинальное напряжение вторичной обмотки, определяемое из опыта холостого хода,

I2 – номинальный ток вторичной обмотки, определяемое из опыта короткого замыкания,

РС – потери мощности в сердечнике трансформатора,

РМ – потери мощности в обмотках трансформатора.

Стоит отметить, что потери мощности в опыте холостого хода и опыте короткого замыкания желательно измерять у предварительно прогретого трансформатора или пересчитывать токи и напряжения с учётом нормальной температуры работы Т = 75 °С.

Со следующей статьи я буду рассказывать, как рассчитывать различные типы трансформаторов, которые чаще всего используют.

Теория это хорошо, но необходимо отрабатывать это всё практически ПОПРОБЫВАТЬ МОЖНО ЗДЕСЬ