ElectronicsBlog

Обучающие статьи по электронике

StudLance.ru

Применение шифраторов и дешифраторов

Всем доброго времени суток! В предыдущих постах я рассказывал про триггеры, регистры и счётчики, которые составляют отдельный класс микросхем называемых последовательными или последовательностными. С сегодняшнего поста будет вестись рассказ о комбинационных типах микросхем, к которым относятся дешифраторы, шифраторы, компараторы кодов, мультиплексоры и некоторые другие.

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

Комбинационные микросхемы, как ясно из названия представляют собой комбинацию из простых логических микросхем, но в отличие от последовательностных они не обладают памятью и их выходные сигналы никак не зависят от комбинации предыдущих входных сигналов. Первые комбинационные микросхемы, которые мы рассмотрим в этом посте, являются дешифраторы и шифраторы.

Микросхемы дешифраторы

Функция микросхем дешифраторов, как понятно из названия, состоит в том, чтобы преобразовывать входной двоичный код в номер выходного сигнала, количество которых соответствует количеству состояний двоичного кода, то есть 2N, где N – количество разрядов двоичного кода (количество информационных входов дешифратора). Для обозначения микросхем дешифраторов введён специальный суффикс ИД, например, К555ИД7, а на обозначениях микросхем на принципиальных схемах ставят буквы DC.

В стандартных сериях микросхем существуют дешифраторы на 4, 8 или 16 выходов, соответственно они имеют 2, 3 или 4 входа. Ещё различия между микросхемами включают в себя входы управления и типы выходов микросхем (обычный 2С выход или выход с общим коллектором ОК). Входы дешифраторов обычно обозначают цифрами, которым соответствует вес разряда двоичного числа (1, 2, 4 или 8), а выходы также обозначают цифрами (1, 2, 3 и т.д.). Для примера рассмотрим несколько микросхем дешифраторов: К555ИД14, К555ИД7, К555ИД3.


микросхемы дешифраторов
Микросхемы дешифраторы: слева направо К555ИД14, К555ИД7, К555ИД3.

Данные микросхемы являются стандартными дешифраторами, которые имеют информационные входы 1, 2, 4, 8, входы разрешения С1, С2, С3, объединённые по функции И, а также выходы от 0 до 15. Различие между данными микросхемами состоит в количестве входов и выходов.

Микросхема К555ИД14 представляет собой сдвоенный двоичный дешифратор, каждая половина имеет два информационных входа 1, 2, вход разрешения С и четыре выходных вывода, имеет второе название дешифратор 2 – 4. Микросхема К555ИД7 имеет соответственно три информационных входа, три входа разрешения объединенных по И и восемь выходов, второе название дешифратор 3 – 8. К555ИД3 имеет второе название дешифратор 4 – 16 и имеет четыре информационных входа, два входа разрешения и шестнадцать выходов. Работу данных микросхем можно описать таблицей истинности.

Входы Выходы
С 2 1 0 1 2 3
1 Х Х 1 1 1 1
0 0 0 0 1 1 1
0 1 0 1 0 1 1
0 0 1 1 1 0 1
0 1 1 1 1 1 0

Таблица истинности дешифратора 2 – 4 (К555ИД14).

Микросхемы дешифраторы имеют несколько типичных сфер применения. Во первых это непосредственное дешифрирование входных кодов, при этом входы С используются как стробирующие. В таком случае номер активного выхода показывает, какой код поступил на входы. Второй сферой применения является селекция кодов. В этом случае сигнал на следующий каскад цифрового устройства поступает только с одного из выходов дешифратора и когда на входные выводы поступает нужный нам код, об этом свидетельствует появление низкого логического уровня на соответствующем выходе. Ещё одним из применений дешифратора является мультиплексирование линий когда поступающий код на входе определяет номер линии на выходе.

Микросхемы шифраторы

Микросхемы шифраторы применяются значительно реже, чем дешифраторы. Они имеют обозначение на схемах буквами CD, а в названии микросхем имеют суффикс ИВ. Как понятно из названия они выполняют функцию обратную микросхемам дешифраторов и обычно имеют от 4 до 16 (чаще всего 8) информационных входов, от 2 до 4 выходов (чаще всего 3) и несколько стробирующих (разрешающих) входов и выходов. Типичными представителями данных типов микросхем являются микросхемы К555ИВ1 и К555ИВ3 которые изображены ниже.


микросхемы шифраторов
Микросхемы шифраторы: слева направо К555ИВ1, К555ИВ3.

Микросхема К555ИВ1 является шифратором и содержит 8 информационных входов и три выхода, а также вход разрешения EI, выход признака прихода любого входного сигнала GS и выход переноса ЕО, для объединения нескольких шифраторов. Работа данного шифратора разрешается только при низком логическом уровне на входе EI, а при высоком уровне на нём на всех выходах устанавливается уровень логической единицы. В случае отсутствия каких-либо сигналов на входах на выходе GS вырабатывается логическая единица, а на выходе ЕО логический нуль. Запишем таблицу истинности для данной микросхемы.

Входы Выходы
EI 0 1 2 3 4 5 6 7 GS 4 2 1 EO
1 X X X X X X X X 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1 1 1 1 0
0 X X X X X X X 0 0 0 0 0 1
0 X X X X X X 0 1 0 0 0 1 1
0 X X X X X 0 1 1 0 0 1 0 1
0 X X X X 0 1 1 1 0 0 1 1 1
0 X X X 0 1 1 1 1 0 1 0 0 1
0 X X 0 1 1 1 1 1 0 1 0 1 1
0 X 0 1 1 1 1 1 1 0 1 1 0 1
0 0 1 1 1 1 1 1 1 0 1 1 1 1

Таблица истинности шифратора К555ИВ1.

Наиболее часто шифраторы применяют для сокращения количества сигнальных линий, что очень удобно при передачи сигналов на большие расстояния, но при этом, входные сигналы не должны приходить одновременно на все входы. Наличие у шифратора дополнительных входных и выходных линий позволяет объединить их для увеличении разрядности шифратора, но только с помощью дополнительных логических элементов.

Теория это хорошо, но необходимо отрабатывать это всё практически ПОПРОБОВАТЬ МОЖНО ЗДЕСЬ