Введение в цифровую электронику | HomeElectronics

ElectronicsBlog

Обучающие статьи по электронике

Введение в цифровую электронику

Всем доброго времени суток! Сегодня моя запись о основах цифровой электроники. Но для начало, как говорил один человек, надо определиться с терминологией. То есть, что есть что в цифровой электронике.

Электрический сигнал — это электрическая величина (напряжение, ток), которая изменяется со временем. В основном вся электроника работает с электрическими сигналами, но в последнее время всё чаще используются и другие виды сигналов (например давление, температура, свет).

Аналоговый сигнал — это сигнал, который может принимать любые значения в определённых пределах (например, напряжение может плавно изменяться в пределах нескольких десятков вольт). Устройства, которые работают только с аналоговыми сигналами, называются аналоговыми устройствами.

Цифровой сигнал — это сигнал, который может принимать только два значения (иногда — три значения). Причём разрешены некоторые отклонения от этих значений. Устройства, которые работают только с цифровыми сигналами, называются цифровыми устройствами.

Достоинство и недостатки аналоговых и цифровых устройств

Изначально все электронные устройства были только лишь аналоговыми, но со временем, когда требования к электронным устройствам выросли, начали проявляться недостатки аналоговой электроники. Всё дело в том, что аналоговые сигналы чувствительны к всяким паразитным воздействиям — шумам, наводкам, помехам, которые искажают полезный сигнал, а при передаче сигнала на большие расстояния они ослабляются.

В отличие от аналоговых сигналов, цифровые, имеющие всего два уровня разрешённых значений, защищены от воздействия шумов, наводок и помех гораздо лучше. Имеющиеся небольшие отклонения от разрешённых значений никак не искажают цифровой сигнал, так как всегда существуют зоны допустимых отклонений. Однако у цифровых устройств имеется крупный недостаток. Дело в том, что для распознавания уровня сигнала необходимо, чтобы этот уровень поддерживался в течении определённого интервала. А аналоговый сигнал может принимать любое значение в течении любого, даже самого минимального, периода времени. Поэтому часто аналоговые сигналы называют непрерывными во времени, а цифровые — дискретные по времени сигналы. Отсюда можно сделать вывод, что максимально достижимое быстродействие аналоговых устройств всегда принципиально выше, чём цифровых.

Математика и электроника

В настоящее время люди умеют считать гораздо лучше, чем в прошлом: у них есть замечательные помощники — умные вычислительные машины. Сегодня вычисления ведутся в сотни тысяч раз быстрее, чем сто лет назад. Как удалось достигнуть этого? Разработчики электронной и компьютерной техники, говорят, что этого достигли тем, что стали считать по другому. Не обязательно считать десятками, сотнями и тысячами ответят они.

Давно известны не десятичные системы счисления, например, система счисления с основанием 12. В роли «десятка» (единицы 2-го разряда) в ней выступает «дюжина», в роли «сотни» (единицы 3-го разряда) — «гросс» (дюжина в квадрате), а единицу четвёртого разряда называют «фут» (дюжина в кубе).

Но в мире цифровой электроники наиболее привлекательными оказались системы счисления с основанием 2, 8 и 16, то есть двоичная, восьмеричная и шестнадцатеричная системы счисления. Наиболее используемая система счисления — это конечно же двоичная. Для этого имеется ряд оснований.

Всякое цифровое устройство должно уметь «читать», «запоминать» и «демонстрировать» цифры и числа, составленные из них. В двоичной системе счисления цифр всего две: 0 и 1.

Легко придумать способ демонстрации двоичных чисел. Двоичное число, например 10012, можно записать при помощи гирлянды электрических лампочек: зажжённая лампочка обозначает «1», а не зажжённая — «0». Так изображенное число легко прочитать.

В цифровое устройство двоичное число можно вводить по проводникам электрического тока, например, 5 вольт значит, что демонстрируется «1», а если напряжение равно нулю, то демонстрируется «0».

Для запоминания двоичных чисел используются различные электрические и физические свойства с ярко выраженными двумя состояниями (например, в жёстких дисках используется эффект намагниченности отдельных участков, в оптических дисках — различие в отражающей способности или же на триггерном эффекте когда сама электронная схема хранит информацию).

Второе важное основание для использования двоичной системы — простота двоичной арифметики. Например, таблица сложения будет выглядеть следующим образом:

+ 0 1
0 0 1
1 1 10

и таблица умножения

х 0 1
0 0 0
1 0 1

Операции над числами

Как уже упоминалось выше цифровые устройства должно иметь возможность считывать число, запоминать и демонстрировать его. Но для выполнения этих функций не нужно было бы такое разнообразие цифровых устройств. Самое главное что должно уметь выполнять цифровое устройство — это выполнять операции над числами, которые оно принимает на свой вход и на выходе получать какой то результат.

Существует великое множество операций над числами, но в цифровой электронике этих основных операций всего три — это логическое умножение, логическое сложение и логическое отрицание.

1. Логическое умножение (функция «И»). Как же будет зависеть результат на выходе от входных данных? Мы привыкли употреблять союз И так, что слова которые он объединяет понимаются, как неразрывное целое. Например, пусть даны два простых выражения.
Володя принёс молотокА;
Володя принёс стамескуВ.
Составим их логическое произведение.
Володя принёс молоток И Володя принёс стамеску — (АВ).
Истинным такое высказывание будет только при условии, что Володя принёс оба предмета (А = 1, В = 1). Зависимость истинности логического произведения от сомножителей можно задать таблицей, называемой таблицей истинности:

A B AB
1 1 1
1 0 0
0 1 0
0 0 0

2. Логическое сложение (функция «ИЛИ»). Воспользовавшись нашими высказываниями:
<Володя принёс молотокА;
Володя принёс стамескуВ.
Составим их логическую сумму.
Володя принёс молоток ИЛИ Володя принёс стамеску — (А + В).

Ясно, что ложным такое высказывание будет при условии, что Володя не принёс ни одного из предметов, а истинным когда есть хотя бы один из них. Таблица истинности в таком случае будет следующей:

A B A + B
1 1 1
1 0 1
0 1 1
0 0 0

3. Логическое отрицание (функция «НЕ»). Указание совершить операцию отрицания на высказыванием А записывается так: А. Ясно, что если данное высказывание истинно, то его отрицание ложно и наоборот.

Солнце всходит на востоке (А = 1); Солнце не всходит на востоке (А = 0).

Таблица истинности будет такой:

A А
1 0
0 1

Простейшие логические схемы

Реализацию логических выражений можно осуществить с помощью простых электронных схем, на входы которых поступают электрические входные сигналы, а на выходе формируется выходной сигнал, который соответствует логической функции.

1. Логический элемент И. Представляет собой схему, в которой сигнал 1 на выходе появляется только тогда, когда на входе А и входе В совпадают сигналы 1. Простейший логический элемент И может быть реализован на последовательно включённых контактах реле, управляемых с помощью кнопок.


Релейно-контактная схема И
Релейно-контактная схема элемента И

Условное обозначение логического элемента И с двумя входами показано ниже. На выходе логического элемента И сигнал 1 появится только тогда, когда на всех входах совпадут сигналы 1.


Обозначение элемента И
Условное графическое изображение логического элемента И

2. Логический элемент ИЛИ. Представляет собой схему, на выходе которой появляется сигнал 1, если на входе А или входе В или на обоих входах присутствует сигнал 1. Простейший логический элемент ИЛИ может быть реализован на параллельно включённых контактах реле, управляемых с помощью кнопок.


Релейно-контактная схема ИЛИ
Релейно-контактная схема элемента ИЛИ

Условное обозначение логического элемента ИЛИ с двумя входами показано ниже. На выходе логического элемента ИЛИ сигнал 1 появится в случае появления хотя бы на одном из входов сигнала 1.


Обозначение элемента ИЛИ
Условное графическое изображение логического элемента ИЛИ

3. Логический элемент НЕ. Представляет собой схему, на выходе А которой появляется сигнал 1 при отсутствии на входе А сигнала 1. Простейший логический элемент НЕ реализован на реле с нормально замкнутыми контактами.


Релейно-контактная схема НЕ
Релейно-контактная схема элемента НЕ

Условное обозначение логического элемента НЕ показано ниже. На выходе логического элемента НЕ сигнал 1 появится в случае отсутствия сигнала 1 на входе


Обозначение элемента НЕ
Условное графическое изображение логического элемента НЕ

Логические элементы И, ИЛИ и не предназначены для выполнения трёх основных операций цифровой логики над дискретными сигналами. С помощью этих элементов можно реализовать логические операции любой сложности. Поэтому эти элементы называются основными.

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

*

code